Game Theory

Lecture 2: Static games with complete information – the normal form

Frieder Neunhoeffer

Lisbon School of Economics & Management Universidade de Lisboa

UNIVERSIDADE De lisboa

Static games with complete information

- Static games: The players move simultaneously, so that none can observe and react to the choices made by the other players.
- Complete information: Each player knows fully the rules of the game. In particular, each one knows the "payoff functions" of all players.
- Payoff function of a player gives the reward the player gets as a result of the combination of strategies selected by all players.

Normal form of a game with pure strategies

Pure strategies are basic alternatives of an action.

- The **normal** or **"strategic" form** of a game contains three elements:
 - **1.** A set of players $I = \{1, 2, ..., n\}$, where n is a positive integer.
 - 2. For any player $i \in I$, S_i is the set of pure strategies that are available to him.
 - S_i can be either **finite**: $S_i = \{1, 2, ..., m_i\}$ for any integer $m_i \ge 2$.
 - Or S_i can be a **continuum**, where it takes the form of an *interval* [a, b].

3. Let $s = (s_1, s_2, \dots, s_i)$ be the vector or profile of strategies that are selected by all the players. Then, for any s and each player $i \in I, \pi_i(s)$ is the payoff function, that gives the reward (amount of utility or money) for player i, stemming from the combination of strategies s.

Normal form of a game with pure strategies

- Several definitions are useful:

 - The combined payoff function of the game is $\pi(s) \equiv (\pi_1(s), \pi_2(s), \dots, \pi_n(s))$
- game can be defined by a triplet:

 $G \equiv (I, S, \Pi)$ where

I is the set of players *S* is the space of pure strategies Π is the combined payoff function

• The space of pure strategies of the game is $S \equiv x_i S_i$. It contains all possible values of s.

• Definition of normal form of a game. If only pure strategies are taken into account, any

Special case: 2 player finite games

- If there are only two players, 1 and 2, endowed with m_1 and m_2 discrete strategies respectively, the **normal form** can be written as a matrix $m_1 \times m_2$.
 - Each row h of the matrix represents a pure strategy $h \in S_1$, available to player 1.
 - Each column k of the matrix stands for a pure strategy $k \in S_2$, available to player 2.
 - The sub-matrix $A = (a_{hk}) = \pi_1(h, k)$ contains the payoffs of player 1.
 - The sub-matrix $B = (b_{hk}) = \pi_2(h, k)$ contains the payoffs of player 2.
- **Remark:** Usually, sub-matrices *A* and *B* are consolidated in a single matrix (*A*, *B*), that contains payoffs *a*_{*hk*}, *b*_{*hk*} in each matrix cell.

13

Example: Prisoner's dilemma

• The payoff (years in prison) matrices of this game are:

$$A = \begin{pmatrix} 3 & 0 \\ 5 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

- If both chose "Deny" they get a payoff (1 year) strictly higher than the payoff that they • achieve by choosing "Confess" (3 years) \rightarrow dilemma

$$\binom{5}{1}, (A, B) = \begin{pmatrix} 3, 3 & 0, 5 \\ 5, 0 & 1, 1 \end{pmatrix}$$

• Each player has two pure strategies: "Confess" and "Deny", respectively. The first strategy gives each player a higher payoff (fewer years in prison) than the second one, for any choice made by the other player. \rightarrow Game theory predicts both select "Confess".

Special case: 3 player finite games

- using two matrices. In this case:
 - 1. The choice of player 1 is represented by the choice of the row.
 - 2. The choice of player 2 is represented by the choice of the column.
 - 3. The choice of player 3 is represented by the choice of the matrix.
- Each cell of each matrix contains three numbers, representing the payoffs of players 1, 2 and 3, respectively.
- Example:

 $\begin{pmatrix} 1,1,1 & 0,0,0 \\ 2.2.2 & 3.2.1 \end{pmatrix},$

With three players and discrete strategy sets, it is possible to write the normal form

$$\begin{pmatrix} 3,4,5 & 1,1,1 \\ 6,1,0 & 0,0,0 \end{pmatrix}$$

Introducing mixed strategies

- mixed strategy for player *i* can be represented by a vector *x_i*, whose generic element is p_{is} , the probability that player *i* assigns to playing pure strategy *s*.
- Meaning of a mixed strategy: Instead of choosing a basic alternative of action (i.e., a pure strategy), the player builds a random device (a coin, a dice or a mechanism before acting.
- i.e.,

• **Definition:** A *mixed strategy* for player *i* is a distribution of probability over his set of pure strategies S_i . Let us assume that player i has m_i pure strategies. Then, a

roulette) that selects each pure strategy with a given probability. Then, he runs this

• Each mixed strategy of player i, x_i , has a support, labelled as $C(x_i)$, that is the set of pure strategies available to player *i*, to which he assigns positive probabilities,

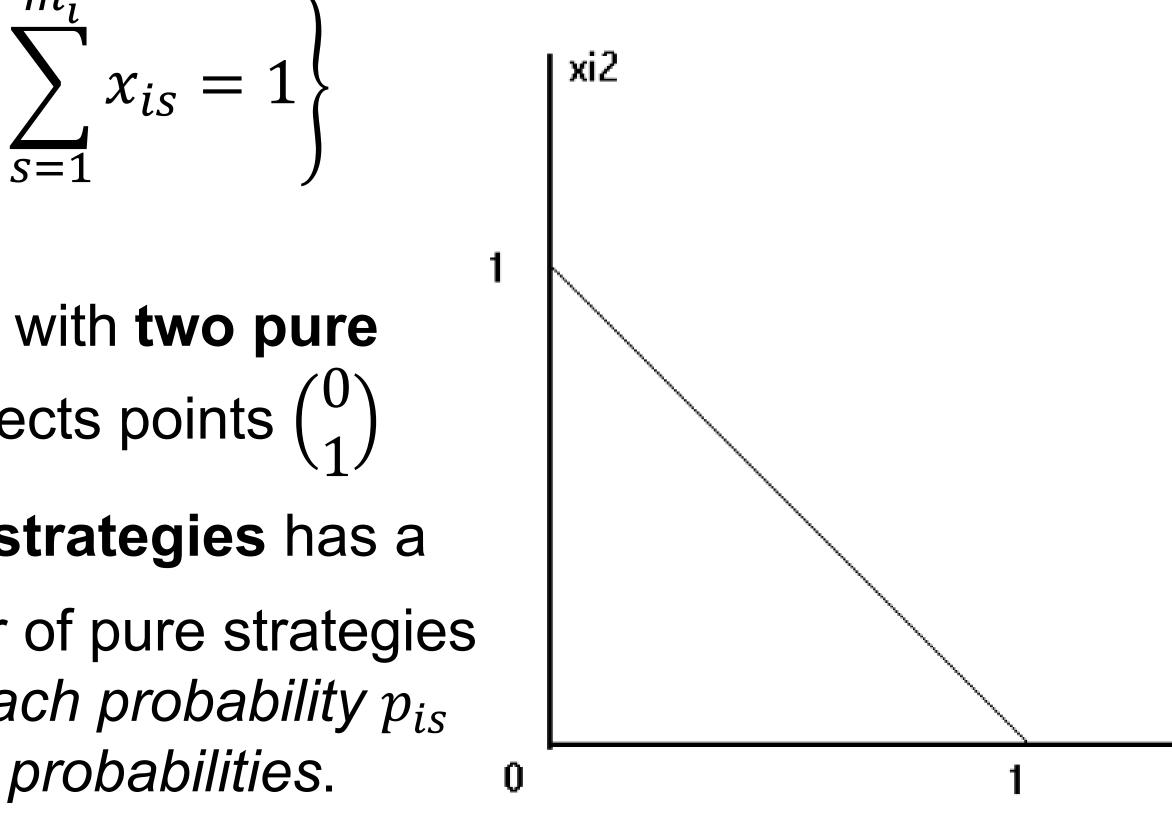
 $C(x_i) = \{s \in S_i : p_{is} > 0\}$

Introducing mixed strategies

• Given the properties of probabilities, the set of mixed strategies of player *i* is (in geometric terms) the unit simplex in space m_i , Δ_i , as defined by:

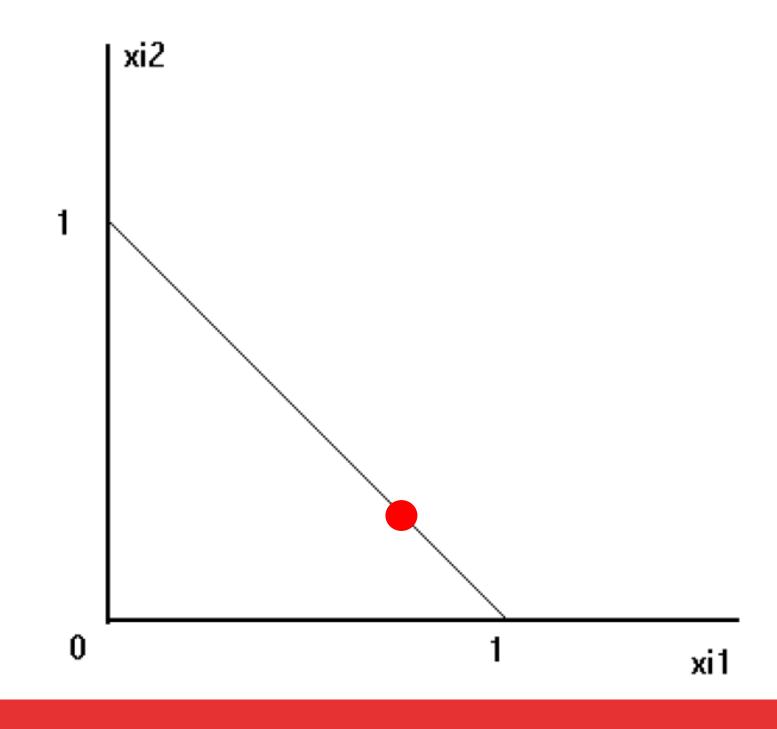
 $\Delta_i \left\{ \mathbf{x}_i \in R^{m_i}_+ : \sum_{s=1}^{m_i} x_{is} = 1 \right\}$

• The set of mixed strategies of a player with **two pure strategies** is a line segment that connects points $\begin{pmatrix} 0\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\0 \end{pmatrix}$. In general, the **set of mixed strategies** has a **dimension** that is equal to the number of pure strategies minus 1, $m_i - 1$. This is so because each probability p_{is} can be written as 1 minus all the other probabilities.

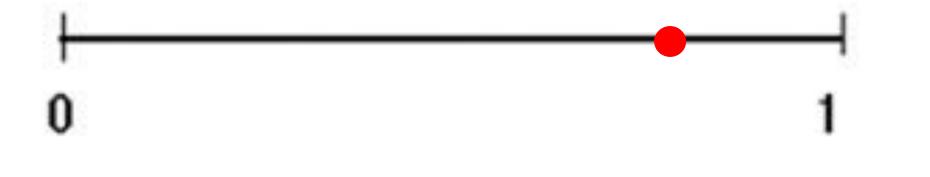


Definition of Projection

form $(x_1, x_2, \dots, x_{n-1})$



• Let us assume a space X of dimension n, whose elements are vectors (x_1, x_2, \dots, x_n) . A projection is a function that associates with each element (x_1, x_2, \dots, x_n) , a vector that is made up by a part of the initial coordinates (one dimension less). Hence, a projection $X \in R_n$ into R_{n-1} associates with an element (x_1, x_2, \dots, x_n) , an element of the



Game Theory – Frieder Neunhoeffer

xil

Definition of vertices (corners) of Δ_i

• m_i pure strategies are the unit vectors in a space with dimension m_i :

$$e_i^1 = \begin{pmatrix} 1\\0\\...\\0 \end{pmatrix}, e_i^2 = \begin{pmatrix} 0\\1\\...\\0 \end{pmatrix}, ... e_i^{m_i} = \begin{pmatrix} 0\\0\\...\\1 \end{pmatrix}$$

the corners are points $\begin{pmatrix} 0\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\0 \end{pmatrix}$.

- In the previous figures,
- mass (i.e., 1) of probability to a single pure strategy s.

$$x_i = \sum_{s=1}^{m_i} x_{is} e_i^s; \ x_{is} \ge 0, \sum_{s=1}^{m_i} x_{is} = 1$$

Vertices (also called *corners*) of the set of mixed strategies of a player endowed with

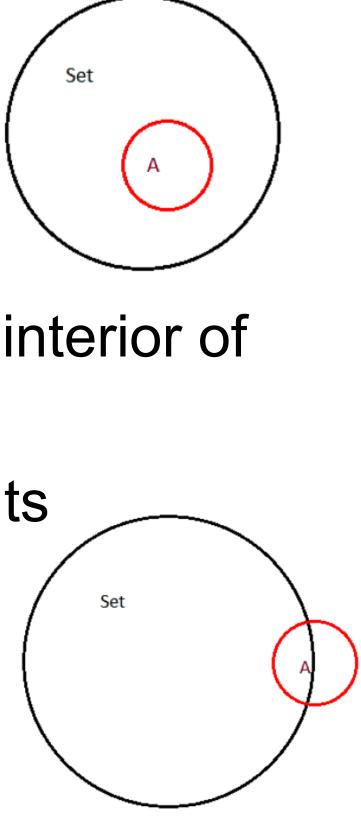
Meaning: Each vertex represents the pure strategy s of player i. Consequently, the pure strategy s is nothing but a "special" mixed strategy x_i that assigns the whole

• Thus, each mixed strategy $x_i \in \Delta_i$ is a **convex** combination of its pure strategies e_i^S :

Some more basic definitions

- An interior point has a neighborhood which is fully contained in the set. The interior of a set is the set of its interior points.
- A set is **open** if it is made up only of interior points, i.e., if it is coincident with its interior. Example: (1,2,3)

- An **boundary point** is a point for which any neighborhood contains both, points that belong and points that do not belong to the set. The **boundary of a set** is the set of its boundary points.
- A closed set is a set that owns its boundary. For instance, the set of mixed strategies of a player *i*, Δ_i , is a closed set. Example: [1,2,3]



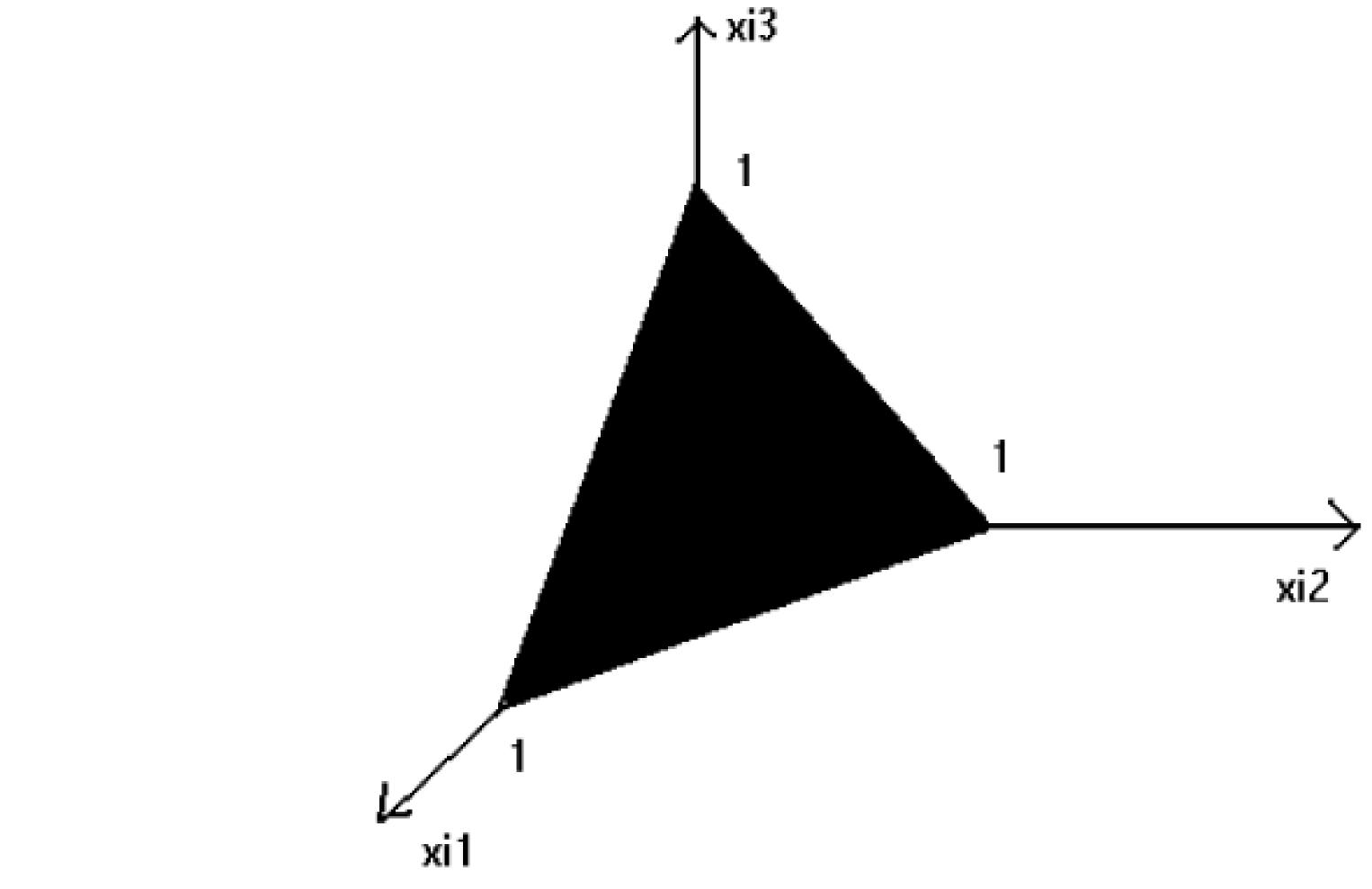
Applied to mixed strategies

definitions have a more precise meaning:

- An interior point of Δ_i is a mixed strategy that is completely mixed, i.e., that assigns a positive probability to each pure strategy s available to player i.
- In our example the interior is coincident with the set of mixed strategies, leaving aside the boundary points or vertices $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- The boundary of the set of mixed strategies of player *i* is the set of strategies that assign positive probability only to some pure strategies, so that the support of the mixed strategy x_i , $C(x_i)$ is a proper subset of the set of pure strategies available to player *i*, S_i .

If we are concerned with the set of mixed strategies of a player i, Δ_i , then the above

Mixed strategy set Δ_i when player *i* has three pure strategies



Game Theory – Frieder Neunhoeffer

Interacting mixed strategies of all players

key concepts here are:

- **Profile of mixed strategies:** It is the vector $(x_1, x_2, ..., x_n)$, where $x_i \in \Delta_i$ is the mixed strategy selected by player *i*.
- Space of mixed strategies Θ is the Cartesian product $\times_i \Delta_i$, whose generic element is (x_1, x_2, \dots, x_n) .

Up to now we have considered the strategies chosen by a unique player (i). Henceforth, we will consider the mixed strategies selected by all the participants in the game. The

Interacting mixed strategies of all players

- Let us assume that there are two players and that each player has available two pure strategies. Then, each player has a strategy set Δ_i , and Θ is four-dimensional.
- But we can take linear projections of each strategy set and reduce Θ to two dimensions.
- Bi-dimensional projection of the space of mixed strategies
- The dimension of the space of mixed strategies of the game, Θ , is

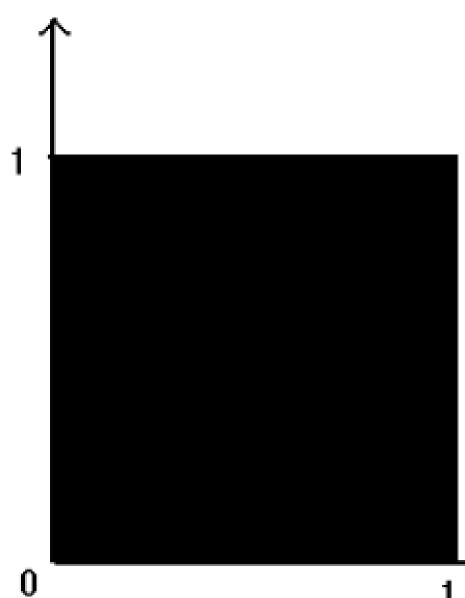
$$\sum_{i=1}^{n} (m_i - 1)$$

and $m = m_1 + m_2 + \dots + m_n$ ategies available to player i

and
$$m_i \equiv number \ of \ pure \ strates$$

It is clear that m > n, as each player has at least two pure strategies.

= m - n



Practical remark

his strategy as x_i , while we assume that the other players select their strategies according to the profile $y \in \Theta$.

Instead of writing a profile of mixed strategies as $x = (x_1, x_2, ..., x_n), \in \Theta$, we use often the notation (x_i, y_{-i}) . If we are concerned mainly with the behavior of player i, we label

Game Theory – Frieder Neunhoeffer

Payoff functions in mixed strategies

• We assume that the random devices of all players are statistically independent. players, is simply the associated product defined by,

$$x(s) =$$

- where x_{is_i} is the probability that the mixed strategy $x_i \in \Delta_i$, selected by player *i*, assigns to the pure strategy $s_i \in S_i$.
- $x = (x_1, x_2, ..., x_n) \in \Theta$, is

$$v_i(x) = \sum_{s \in S} x(s) \pi_i(s).$$

LISBOA UNIVERSIDADE DE LISBOA

Hence, the probability that a given profile of pure strategies $s = (s_1, s_2, \dots, s_n), \in S$ is used when the profile of mixed strategies $x = (x_1, x_2, ..., x_n)$ is adopted by all the

$$x(s) = \prod_{i=1}^{n} x_{is}$$

• The expected payoff v_i of player i, associated with the profile of mixed strategies

• Then, the payoff combined function for all the players is $v(x) = (v_1(x), v_2(x), \dots, v_n(x))$.

Payoff functions in mixed strategies

seen before, the triple:

 $G = (I, S, \Pi)$

- whereas the game rules, if mixed strategies are allowed, become
- In the case of finite games with two players, the normal form of the game can be payoffs of the players related with a profile of strategies $x = (x_1, x_2)$ is, $v_{1}(x) = \sum_{h=1}^{m_{1}} \sum_{k=1}^{m_{2}} x_{1h} a_{hk} x_{2k} = x_{1} A x_{2}$ $v_{2}(x) = \sum_{h=1}^{m_{1}} \sum_{k=1}^{m_{2}} x_{1h} b_{hk} x_{2k} = x_{1} B x_{2}$

• The normal form of a game where only pure strategies are allowed is, as we have

 $G' = (I, \Theta, V)$

expressed by the payoff matrices $(A, B), A = (a_{hk})$ being the payoff matrix of player 1, whose pure strategies are represented by the rows, and $B = (b_{hk})$, the payoff matrix of player 2, whose pure strategies are expressed by the columns. Then, the expected

Example

game are, as we saw before,

 $A = \begin{pmatrix} 3 & 0 \\ 5 & 1 \end{pmatrix}$

- regardless of the move of the opponent.
- functions of player 1 is,

 $E(\pi_1(x)) = x_1 A x_2 = x_{11}(3x_{21} + 0x_{22}) + x_{12}(5x_{21} + 1x_{22})$

• Moreover, since

- we obtain, through substitution of x_{11} into $E(\pi_1(x))$, that
- that the mixed strategy assigns to the first pure strategy.
- Given the game symmetry, the corresponding reasoning holds for player 2.

• Let us consider the game *Prisoner's Dilemma*. The payoff (years in prison) matrices of the

$$,B = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}$$

• We have remarked that, in this game, the first strategy is more advantageous for each player,

• This property is conserved if mixed strategies are allowed. In this case, the expected payoff

```
x_{11} + x_{12} = 1 \leftrightarrow x_{11} = 1 - x_{12}
E(\pi_1(x)) = (1 - x_{12})3x_{21} + x_{12}(5x_{21} + 1x_{22})
               = 3x_{21} + x_{12}(2x_{21} + x_{22})
```

• Inspection of the expected payoff function shows that it is an increasing function of x_{12} . Until player 1 selects its first pure strategy (i.e., $x_{12} = 1$), it pays always to increase the probability

References

- GIBBONS, R. (1992), A Primer in Game Theory, New York, Harvester Wheatsheaf, Chapter 1, Sections 1.1.A., 1.3.A, pages 2-4, 29-33.
- MAS-COLLEL, A. et AL. (1995), Microeconomic Theory, chapter 7, sections 7.A, 7.B, 7.D and 7.E, pages: 219-221 and 228-233.
- WEIBULL, Jörgen W. (1997), Evolutionary Game Theory, Cambridge Mass./London, England, chapter 1: 1-9.

