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Static games with complete information

» Static games: The players move simultaneously, so that none can observe
and react to the choices made by the other players.

 Complete information: Each player knows fully the rules of the game. In
particular, each one knows the "payoff functions” of all players.

» Payoff function of a player gives the reward the player gets as a result of the
combination of strategies selected by all players.




Normal form of a game with pure strategies

Pure strategies are basic alternatives of an action.

 The normal or "strategic" form of a game contains three elements:

1. A setof players I = {1,2, ...,n}, where n is a positive integer.

2. For any player i € I, S; is the set of pure strategies that are available to him.
e S, can be either finite: S; = {1,2, ..., m;} for any integer m; > 2.
* OrS; can be a continuum, where it takes the form of an interval |a, b].

3. Lets = (sq4,5,,...,5;) be the vector or profile of strategies that are selected by all the players.
Then, for any s and each player i € I, ;(s) is the payoff function, that gives the reward
(amount of utility or money) for player i, stemming from the combination of strategies s.




Normal form of a game with pure strategies

» Several definitions are useful:
* The space of pure strategies of the game is S = X; S;. It contains all possible values of s.
* The combined payoff function of the game is n(s) = (1 (s), T, (S), ..., T, (5))

* Definition of normal form of a game. If only pure strategies are taken into account, any
game can be defined by a triplet:

G = (1,S,1I) where

I is the set of players
S is the space of pure strategies
I1 is the combined payoff function




Special case: 2 player finite games

 |f there are only two players, 1 and 2, endowed with m; and m, discrete strategies
respectively, the normal form can be written as a matrix m; X m,.

* Each row h of the matrix represents a pure strategy h € S, available to player 1.

* Each column k of the matrix stands for a pure strategy k € S,, available to player 2.
* The sub-matrix A = (a;;) = m1(h, k) contains the payoffs of player 1.

* The sub-matrix B = (by;,) = m,(h, k) contains the payoffs of player 2.

 Remark: Usually, sub-matrices 4 and B are consolidated in a single matrix (4, B), that
contains payoffs ay;, by, In each matrix cell.




Example: Prisoner’s dilemma

* The payoff (years in prison) matrices of this game are;
(3 0 (3 5 - (3,3 0,5
A= (5 1)'3 B (o 1)’(‘4’3) - (5,0 1,1)

» Each player has two pure strategies: "Confess" and "Deny", respectively. The first
strategy gives each player a higher payoff (fewer years in prison) than the second one,

for any choice made by the other player. - Game theory predicts both select "Confess".

 If both chose "Deny" they get a payoff (1 year) strictly higher than the payoff that they
achieve by choosing “Confess” (3 years) = dilemma




Special case: 3 player finite games

» With three players and discrete strategy sets, it is possible to write the normal form
using two matrices. In this case:

1. The choice of player 1 is represented by the choice of the row.
2. The choice of player 2 is represented by the choice of the column.
3. The choice of player 3 is represented by the choice of the matrix.

» Each cell of each matrix contains three numbers, representing the payoffs of
players 1, 2 and 3, respectively.

« Example:

(1,1,1 0,0,0) (3,4,5 1,1,1)
"\6,1,0 0,0,0

2,2,2 3,2,1




Introducing mixed strategies

* Definition: A mixed strategy for player i is a distribution of probability over his set
of pure strategies S;. Let us assume that player i has m; pure strategies. Then, a
mixed strategy for player i can be represented by a vector x;, whose generic
element is p;., the probability that player i assigns to playing pure strategy s.

* Meaning of a mixed strategy: Instead of choosing a basic alternative of action
(l.e., a pure strategy), the player builds a random device (a coin, a dice or a
roulette) that selects each pure strategy with a given probability. Then, he runs this
mechanism before acting.

* Each mixed strategy of player i, x;, has a support, labelled as C(x;), that is the set
of pure strategies available to player i, to which he assigns positive probabillities,
.e.,

C(x;) ={s € $;:pis >0}




Introducing mixed strategies

* Given the properties of probabilities, the set of mixed strategies of playeri is (in
geometric terms) the unit simplex in space m;, A;, as defined by:

A, {Xl ER. les = 1} e

* The set of mixed strategies of a player with two pure
strategies is a line segment that connects points ((1))

and ((1)

dimension that is equal to the number of pure strategies
minus 1, m; — 1. This is so because each probability p;.
can be written as 1 minus all the other probabillities. 0 1

). In general, the set of mixed strategies has a

i1




Definition of Projection

* Let us assume a space X of dimension n, whose elements are vectors (x4, x5, ..., X;,).
A projection is a function that associates with each element (x4, x,, ..., x,,), a vector
that is made up by a part of the initial coordinates (one dimension less). Hence, a
projection X € R, into R,,_, associates with an element (x4, x,, ..., x,,), an element of the
form (x{,x5, ..., Xp_1)

Xi2
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Definition of vertices (corners) of A;

* Vertices (also called corners) of the set of mixed strategies of a player endowed with
m; pure strategies are the unit vectors in a space with dimension m;:

1 0 0
el = (O>,ei2 = (1>,...ezni = (O>
0 0 1

* |n the previous figures, the corners are points ((1)) and ((1))

 Meaning: Each vertex represents the pure strategy s of player i. Consequently, the

pure strategy s is nothing but a "special® mixed strategy x; that assigns the whole
mass (i.e., 1) of probability to a single pure strategy s.

« Thus, each mixed strategy x; € A; is a convex combination of its pure strategies e;:

mi mi




Some more basic definitions

* An interior point has a neighborhood which is fully contained in the set. The interior of
a set is the set of its interior points.

* A setis open if it is made up only of interior points, i.e., if it is coincident with its
interior. Example: (1,2,3)

"

* An boundary point is a point for which any neighborhood contains both, points that
belong and points that do not belong to the set. The boundary of a set is the set of its
boundary points.

* A closed set is a set that owns its boundary. For instance, the set of mixed strategies
of a player i, A;, Is a closed set. Example: [1,2,3]




Applied to mixed strategies

If we are concerned with the set of mixed strategies of a player i, A;, then the above
definitions have a more precise meaning:

* An interior point of A; is a mixed strategy that is completely mixed, i.e., that
assigns a positive probabillity to each pure strategy s available to player i.

* In our example the interior is coincident with the set of mixed strategies, leaving

aside the boundary points or vertices ((1)) and ((1))

* The boundary of the set of mixed strategies of player i is the set of strategies
that assign positive probability only to some pure strategies, so that the support
of the mixed strategy x;, C(x;) is a proper subset of the set of pure strategies
avallable to player i, §S;.




Mixed strategy set A; when player i has three pure strategies

X3
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Interacting mixed strategies of all players

Up to now we have considered the strategies chosen by a unique player (i). Henceforth,
we will consider the mixed strategies selected by all the participants in the game. The
key concepts here are:

* Profile of mixed strategies: It is the vector (x4, x,, ..., x;,), where x; € A; is the
mixed strategy selected by player .

* Space of mixed strategies O is the Cartesian product X; A;, whose generic
element is (x4, X5, ..., X;,).




Interacting mixed strategies of all players

» Let us assume that there are two players and that each player has available two pure
strategies. Then, each player has a strategy set A;, and O is four-dimensional.

* But we can take linear projections of each strategy set and reduce O to two dimensions.

* Bi-dimensional projection of the space of mixed strategies - T

* The dimension of the space of mixed strategies of the game, O, is i

;(m,;—l) =m-—-n

andm=mq +m, + - +m,
and m; = number of pure strategies available to player i

* |tis clear that m > n, as each player has at least two pure strategies.




Practical remark

Instead of writing a profile of mixed strategies as x = (x4, x5, ..., X;,), € O, we use often
the notation (x;, y_;). If we are concerned mainly with the behavior of player i, we label
his strategy as x;, while we assume that the other players select their strategies
according to the profile y € ©.
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Payoff functions in mixed strategies

* We assume that the random devices of all players are statistically independent.
Hence, the probability that a given profile of pure strategies s = (s¢,s,,...,5,), ES IS
used when the profile of mixed strategies x = (x4, x,, ..., x,,) IS adopted by all the
players, is simply the associated product defined by,

X(S) — xiSi
|

* where x;,. Is the probability that the mixed strategy x; € A;, selected by player i,
assigns to the pure strategy s; € ;.

* The expected payoff v; of player i, associated with the profile of mixed strategies
x = (X1,X9, ..., %) € O, IS

vi(x) = ) x(s) mi(s),

SES

* Then, the payoff combined function for all the players is v(x) = (v{(x), v, (x), ..., v,, (x)).




Payoff functions in mixed strategies

* The normal form of a game where only pure strategies are allowed is, as we have
seen before, the triple:

G = (151D

* whereas the game rules, if mixed strategies are allowed, become
G'=(16,v)

* |n the case of finite games with two players, the normal form of the game can be
expressed by the payoff matrices (4, B), A = (ay;) being the payoff matrix of player 1,
whose pure strategies are represented by the rows, and B = (by;,), the payoff matrix of
player 2, whose pure strategies are expressed by the columns. Then, the expected
payoffs of the players related with a profile of strategies x = (x4, x5) IS,

v(x)= z 2 xlhahkx2k = X1 AX,
Uy (x)= 2 2 xlhbhkx2k = X1Bx,




Example

» Let us consider the game Prisoner’s Dilemma. The payoff (years in prison) matrices of the
game are, as we saw before,
(3 0 (3 5
A= (5 1)'3 - (o 1)

* We have remarked that, in this game, the first strategy is more advantageous for each player,
regardless of the move of the opponent.

* This property is conserved if mixed strategies are allowed. In this case, the expected payoff
functions of player 1 is,
E(m1(x)) = x14x; = x11(3%21 + 0x23) + X12(5x21 + 1x2;)
* Moreover, since
X11 ¥ X2 =1 x1 =1—xq;
- we obtain, through substitution of x,, into E(m;(x)), that
E(m1(x)) = (1 — x12)3x21 + x12(5x51 + 1x2;)
= 3x21 + x12(2x31 + x23)
* |nspection of the expected payoff function shows that it is an increasing function of x,,. Until

player 1 selects its first pure strategy (i.e., x;, = 1), it pays always to increase the probability
that the mixed strategy assigns to the first pure strategy.

Given the game symmetry, the corresponding reasoning holds for player 2.

IIIIIIIIIIII
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